Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Adv ; 192023 Aug.
Article in English | MEDLINE | ID: mdl-37691883

ABSTRACT

Recent advances in biomaterials and 3D printing/culture methods enable various tissue-engineered tumor models. However, it is still challenging to achieve native tumor-like characteristics due to lower cell density than native tissues and prolonged culture duration for maturation. Here, we report a new method to create tumoroids with a mechanically active tumor-stroma interface at extremely high cell density. This method, named "inkjet-printed morphogenesis" (iPM) of the tumor-stroma interface, is based on a hypothesis that cellular contractile force can significantly remodel the cell-laden polymer matrix to form densely-packed tissue-like constructs. Thus, differential cell-derived compaction of tumor cells and cancer-associated fibroblasts (CAFs) can be used to build a mechanically active tumor-stroma interface. In this methods, two kinds of bioinks are prepared, in which tumor cells and CAFs are suspended respectively in the mixture of collagen and poly (N-isopropyl acrylamide-co-methyl methacrylate) solution. These two cellular inks are inkjet-printed in multi-line or multi-layer patterns. As a result of cell-derived compaction, the resulting structure forms tumoroids with mechanically active tumor-stroma interface at extremely high cell density. We further test our working hypothesis that the morphogenesis can be controlled by manipulating the force balance between cellular contractile force and matrix stiffness. Furthermore, this new concept of "morphogenetic printing" is demonstrated to create more complex structures beyond current 3D bioprinting techniques.

2.
Adv Mater ; 35(5): e2207337, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36281806

ABSTRACT

Control of adhesion is important in a host of applications including soft robotics, pick-and-place manufacturing, wearable devices, and transfer printing. While there are adhesive systems with discrete switchability between states of high and low adhesion, achieving continuously variable adhesion strength remains a challenge. In this work, a pressure-tunable adhesive (PTA) that is based on the self-assembly of stiff microscale asperities on an elastomeric substrate is presented. It is demonstrated that the adhesion strength of the PTA increases with the applied compressive preload due to the unique contact formation mechanism caused by the asperities. Additionally, a contact mechanics model is developed to explain the resulting trends. For a specific PTA design, the critical pull-off force can be increased from 0.4 to 30 mN by increasing the applied preload from 1 to 30 mN. Finally, the applicability of precision control of adhesion strength is demonstrated by utilizing the PTA for pick-and-place material handling. The approach in pressure-tunable adhesive design based on self-assembly of asperities presents a scalable and versatile approach that is applicable to a variety of material systems having different mechanical or surface properties.

3.
Acta Biomater ; 134: 466-476, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34303012

ABSTRACT

The mechanical properties of tissues are critical design parameters for biomaterials and regenerative therapies seeking to restore functionality after disease or injury. Characterizing the mechanical properties of native tissues and extracellular matrix throughout embryonic development helps us understand the microenvironments that promote growth and remodeling, activities critical for biomaterials to support. The mechanical characterization of small, soft materials like the embryonic tissues of the mouse, an established mammalian model for development, is challenging due to difficulties in handling minute geometries and resolving forces of low magnitude. While uniaxial tensile testing is the physiologically relevant modality to characterize tissues that are loaded in tension in vivo, there are no commercially available instruments that can simultaneously measure sufficiently low tensile force magnitudes, directly measure sample deformation, keep samples hydrated throughout testing, and effectively grip minute geometries to test small tissues. To address this gap, we developed a micromanipulator and spring system that can mechanically characterize small, soft materials under tension. We demonstrate the capability of this system to measure the force contribution of soft materials, silicone, fibronectin sheets, and fibrin gels with a 5 nN - 50 µN force resolution and perform a variety of mechanical tests. Additionally, we investigated murine embryonic tendon mechanics, demonstrating the instrument can measure differences in mechanics of small, soft tissues as a function of developmental stage. This system can be further utilized to mechanically characterize soft biomaterials and small tissues and provide physiologically relevant parameters for designing scaffolds that seek to emulate native tissue mechanics. STATEMENT OF SIGNIFICANCE: The mechanical properties of cellular microenvironments are critical parameters that contribute to the modulation of tissue growth and remodeling. The field of tissue engineering endeavors to recapitulate these microenvironments in order to construct tissues de novo. Therefore, it is crucial to uncover the mechanical properties of the cellular microenvironment during tissue formation. Here, we present a system capable of acquiring microscale forces and optically measuring sample deformation to calculate the stress-strain response of soft, embryonic tissues under tension, and easily adaptable to accommodate biomaterials of various sizes and stiffnesses. Altogether, this modular system enables researchers to probe the unknown mechanical properties of soft tissues throughout development to inform the engineering of physiologically relevant microenvironments.


Subject(s)
Robotic Surgical Procedures , Animals , Biocompatible Materials , Extracellular Matrix , Mechanical Phenomena , Mice , Stress, Mechanical , Tissue Engineering
4.
Soft Matter ; 17(4): 863-869, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33237084

ABSTRACT

The ability to control adhesion is critical in various technologies including wearable electronics, pressure sensitive adhesives, and robotic systems. Biomimetic fibrillar structures, random surface roughness, and chemical surface treatments have been employed to modify the adhesion energy of materials used in these applications. However, polymer thin film dewetting has not been investigated as a surface modification tool to control adhesion. In this work, polystyrene thin films are thermally annealed on a polydimethylsiloxane substrate, causing them to dewet and form stiff, microscopic asperities on the soft substrate. The size of the asperities increases with increasing pre-annealing film thickness. Adhesion is quantified by flat-punch normal indentation testing. The largest asperities exhibited a decrease in adhesion to below the sensitivity of the instrument. More interestingly, the surfaces covered with the smallest asperities displayed a pressure-dependent adhesive response. By increasing the normal compressive stress applied prior to separation, the total debonding energy increased monotonically on the smallest asperity-covered surfaces.

5.
Soft Matter ; 16(27): 6230-6252, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32567642

ABSTRACT

Mechanophores (MPs) are a class of stimuli-responsive materials that are of increasing interest to engineers due to their potential applications as stress sensors. These mechanically responsive molecules change color or become fluorescent upon application of a mechanical stimulus as they undergo a chemical reaction when a load is applied. By incorporating MPs such as spirolactam, spiropyran, or dianthracene into a material system, the real-time stress distribution of the matrix can be directly observed through a visual response, ideal for damage and failure sensing applications. A wide array of applications that require continuous structural health monitoring could benefit from MPs including flexible electronics, protective coatings, and polymer matrix composites. However, there are significant technical challenges preventing MP implementation in industry. Effective strategies to quantitatively calibrate the photo response of the MP with applied stress magnitudes must be developed. Additionally, environmental conditions, including temperature, humidity, and ultraviolet light exposure can potentially impact the performance of MPs. By addressing these limitations, engineers can work to move MPs from the synthetic chemistry bench to the field. This review aims to highlight recent progress in MP research, discuss barriers to implementation, and provide an outlook on the future of MPs, specifically focused on polymeric material systems. Although the focus is on engineering MPs for bulk materials, a brief overview of mechanochemistry will be discussed followed by methods for activation and quantification of MP photo response (concentrating specifically on fluorescently active species). Finally, current challenges and future directions in MP research will be addressed.

SELECTION OF CITATIONS
SEARCH DETAIL
...